Global, EY: Accelerate commercial success by effectively navigating loss of exclusivity. technology. EY Representative (2024)
Google Scholar
Deloitte, LLP: Exploring a pharmaceutical odyssey. technology. Deloitte Representative (2024)
Google Scholar
Conti, RM, Berndt, ER: In: Measurement and Modeling of Healthcare Costs (University of Chicago Press, 2018). https://doi.org/10.7208/chicago/9780226530994.001.0001
Castanheira, M., Ornaghi, C., Siotis, G.: Unexpected consequences of generic entry. J. Health Economics. 68102243(2019). https://doi.org/10.1016/j.jhealeco.2019.102243
Google Scholar
Health Union, LLC: Strategic Healthcare Marketing Budget: The Complete Guide with Benchmarks (2024)
Hemphill, CS, Sampat, BN: Evergreening, patent issues and effective market life in pharmaceuticals. J. Health Economics. 31(2), 327(2012). https://doi.org/10.1016/j.jhealeco.2012.01.004
Google Scholar
Grabowski, H., Long, G., Mortimer, R., Boyo, A.: Recent trends in U.S. brand and generic drug competition. J. Med. ikon. 19(9), 836(2016). https://doi.org/10.1080/13696998.2016.1176578
Google Scholar
Wouters, OJ, Kanavos, PG, McKEE, M.: Comparison of generic drug markets in Europe and the United States: prices, volumes, and expenditures. Milbank Q. 95(3), 554(2017). https://doi.org/10.1111/1468-0009.12279
Google Scholar
Acosta, A., Ciapponi, A., Aaserud, M., Vietto, V., Austvoll-Dahlgren, A., Kösters, JP, Vacca, C., Machado, M., Diaz Ayala, D.H., Oxman, AD: Pharmaceutical policy: reference prices; Impact of other pricing and purchasing policies. Cochrane Database Systematic Rev. 2019(8) (2014). https://doi.org/10.1002/14651858.CD005979.pub2
Moorkens, E., Godman, B., Huys, I., Hoxha, I., Malaj, A., Circuit, Stockinger, St., Multinhuber, S., Dimitrova, M., Tachkov, K., Vončina, L., Palčevsky, VV, G., Slab, J., J., J., J., J., J., J., J., Popelková, L., Kohutova, K., D., Laius, O., Martikainen, J.E., Selke, Kurafalos, V., Magn., Einarsdóttir, Gubrijanov, I., Vella Bonnno, P., Sutorp, V., Melien, Oy, Plisko, R., Mardare, I., Meshkov, D., Novakovic, T G., R., Vulto, A.G. Front. Pharmacol. 11 https://doi.org/10.3389/fphar.2020.591134
Veeraraghavan, B., Bakthavachalam, YD, Sahni, RD, Malhotra, S., Bansal, N., Walia, K.: Loss of ceftazidime/avibactam exclusivity in low- and middle-income countries: a test of antibiotic stewardship practices. Lancet Regional Health – Southeast Asia 15100225(2023). https://doi.org/10.1016/j.lansea.2023.100225
Google Scholar
Nguyen, NX, Sheingold, SH, Tarazi, W., Bosworth, A.: The impact of competition on generic drug prices. Application Health Economy. health policy 20(2), 243(2022). https://doi.org/10.1007/s40258-021-00705-w
Google Scholar
IQVIA: Global pharmaceutical use to 2024. technology. CEO of IQVIA (2024)
Google Scholar
OECD: Health at a glance 2023: Generics and biosimilars. OECD, technology. Representative (2023)
Google Scholar
Rizzo, J.A., Zeckhauser, R.: Generic script sharing and the pricing of branded drugs: The role of consumer choice. International J. Healthcare Finance Economics. 9(3), 291(2009). https://doi.org/10.1007/s10754-008-9052-0
Hua, LH, Hersh, C.M., Morten, P., Kusel, J., Lin, F., Cave, J., Varga, S., Herrera, V., Ko, JJ: Impact of price reductions after loss of exclusivity in a cost-effectiveness analysis: Fingolimod versus Fingolimod for the treatment of relapsing multiple sclerosis. Interferon Beta-1a. J. Managed Care and Specialty Pharmacy 25(4), 490(2019). https://doi.org/10.18553/jmcp.2019.25.4.490
Aitken, ML, Berndt, ER, Bosworth, B., Cockburn, IM, Frank, R., Kleinrock, M., Shapiro, BT: In: Measuring and Modeling Healthcare Costs (University of Chicago Press, 2018). https://doi.org/10.7208/chicago/9780226530994.001.0001
Hong, SH, Shepherd, MD, Scoones, D., Wan, TT: Product line expansion and pricing strategies for branded pharmaceuticals facing patent expiration. J. Managed care pharmacy 11(9), 746(2005). https://doi.org/10.18553/jmcp.2005.11.9.746
Scott Morton, F., Kyle, M.: In: Handbook of Health Economics, vol. 2(Elsevier, 2011), pp. 763-823. https://doi.org/10.1016/B978-0-444-53592-4.00012-8
Federal Trade Commission: Approved Generic Drugs: Short-Term and Long-Term Effects. technology. Representative, Federal Trade Commission, FTC Report (2011)
Grabowski, H., Long, G., Mortimer, R.: Recent trends in brand-name and generic drug competition. J. Med. ikon. 17(3), 207(2014). https://doi.org/10.3111/13696998.2013.873723
Google Scholar
Scott Morton, FM: Barriers to entry, brand advertising, and general barriers to entry in the U.S. pharmaceutical industry. International J. Industrial Institute. 18(7), 1085(2000). https://doi.org/10.1016/S0167-7187(98)00057-5
Google Scholar
Regan, TL: General entry, price competition, and market segmentation in the prescription drug market. 국제 J. Ind. Organ. 26(4), 930(2008). https://doi.org/10.1016/j.ijindorg.2007.08.004
Google Scholar
Nikolopoulos, K., Buxton, S., Khammash, M., Stern, P.: Forecasting branded and generic drugs. International J. Forecast. 32(2), 344(2016). https://doi.org/10.1016/j.ijforecast.2015.08.001
Google Scholar
Box, GE, Jenkins, GM, Reinsel, GC, Ljung, GM: Time Series Analysis: Forecasting and Control (John Wiley & Sons, 2015).
Hochreiter, S., Schmidhuber, J.: Long-term short-term memory. Neural Computing. 9(8), 1735 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Google Scholar
Lim, B., Arik, S.O., Loeff, N., Pfister, T.: A temporal fusion transformer for interpretable multi-horizontal time series forecasting. progress. 국제 J. 예측. 371748(2021). https://doi.org/10.1016/j.ijforecast.2021.03.012
Google Scholar
Orishkin, B., Carpov, D., Chapad, N., Bengio, Y.: In: International Conference on Learning Representations (ICLR) (2020). https://openreview.net/forum?id=r1ecqn4YwB
Li, S., Zhang, W., Wang, L., et al.: Emergency room occupancy prediction using advanced time series models: a comparative study. International J. Med. information 179105380(2023).
Google Scholar
Kim, M., Park, J., Lee, S.: Chatgpt-assisted deep learning model for influenza-like disease surveillance: a comparative study of lstm, n-beats, and tft. J. Med. 국제 결의안. 27e74423(2025). https://doi.org/10.2196/74423
Google Scholar
Wang, arXiv:2311.04770 (2024)
Mozoori, H., Jafari, Z., Rahmani, A.: Model-agnostic careful and interpretable vital sign prediction: a comparative study of n-beats, n-hits and tft. We are conducting a CEUR workshop. 3793176(2024)
Google Scholar
Lundberg, SM, Lee, SI: In: Advances in Neural Information Processing Systems 30 (2017)
Shapley, LS: In: Game Theory II, vol. 28 (Princeton University Press, 1953), pp. 307–317
Rodríguez-Pérez, R.: Interpreting machine learning models using Shapley values: Application to prediction of composite efficacy and multi-target activity. J. Computer-Aided Molecular Design (2020)
Ward, IR: Explainable artificial intelligence for pharmacovigilance: what features are important when predicting adverse events? Computing, Methods Program Biomed (2021)
Google Scholar
Ye, Z., Yang, W., Yang, Y., Ouyang, D.: An interpretable machine learning method for in vitro drug formulation development. Food front. pp 195–207 (2021). https://doi.org/10.1002/fft2.78
Jaganathan, K., Tayara, H., Chong, K.T.: An explainable supervised machine learning model for predicting respiratory toxicity of chemicals using optimal molecular descriptors. Pharmaceutical Sciences (2022)
Lundberg, SM, Nair, B., Vavilala, MS, Horibe, M., Eisses, MJ, Adams, T., Liston, DE, Low, D., Newman, SF, Kim, J., et al.: Explainable machine learning predictions for intraoperative hypoxemia prevention. Nat. Biomed. english 2(10), 749(2018). https://doi.org/10.1038/s41551-018-0304-0
Google Scholar
Molnar, C., Casalicchio, G., Bischl, B.: Surrogate models for explainability: a survey; arXiv:2008.08268